Close
Close

West Nile virus

WNV

Overview

West Nile virus (WNV) is a mosquito-borne zoonotic arbovirus belonging to the genus Flavivirus in the family Flaviviridae. It is found in temperate and tropical regions of the world. It was first identified in the West Nile subregion in the East African nation of Uganda in 1937. Prior to the mid-1990s, WNV disease occurred only sporadically and was considered a minor risk for humans, until an outbreak in Algeria in 1994, with cases of WNV-caused encephalitis, and the first large outbreak in Romania in 1996, with a high number of cases with neuroinvasive disease. WNV has now spread globally, with the first case in the Western Hemisphere being identified in New York City in 1999; over the next five years, the virus spread across the continental United States, north into Canada, and southward into the Caribbean islands and Latin America. WNV also spread to Europe, beyond the Mediterranean Basin, and a new strain of the virus was identified in Italy in 2012. WNV is now considered to be an endemic pathogen in Africa, Asia, Australia, the Middle East, Europe and in the United States, which in 2012 has experienced one of its worst epidemics. In 2012, WNV killed 286 people in the United States, with the state of Texas being hard hit by this virus, making the year the deadliest on record for the United States.

Symptoms - West Nile virus

The incubation period for WNV—the amount of time from infection to symptom onset—is typically from between 2 and 15 days. Headache can be a prominent symptom of WNV fever, meningitis, encephalitis, meningoencephalitis, and it may or may not be present in poliomyelitis-like syndrome. Thus, headache is not a useful indicator of neuroinvasive disease.

  • West Nile fever (WNF), which occurs in 20 percent of cases, is a febrile syndrome that causes flu-like symptoms. Most characterizations of WNF generally describe it as a mild, acute syndrome lasting 3 to 6 days after symptom onset. Systematic follow-up studies of patients with WNF have not been done, so this information is largely anecdotal. In addition to a high fever, headache, chills, excessive sweating, weakness, fatigue, swollen lymph nodes, drowsiness, pain in the joints and flu-like symptoms. Gastrointestinal symptoms that may occur include nausea, vomiting, loss of appetite, and diarrhea. Fewer than one-third of patients develop a rash.
  • West Nile neuroinvasive disease (WNND), which occurs in less than 1 percent of cases, is when the virus infects the central nervous system resulting in meningitis, encephalitis, meningoencephalitis or a poliomyelitis-like syndrome. Many patients with WNND have normal neuroimaging studies, although abnormalities may be present in various cerebral areas including the basal ganglia, thalamus, cerebellum, and brainstem.
  • West Nile virus encephalitis (WNE) is the most common neuroinvasive manifestation of WNND. WNE presents with similar symptoms to other viral encephalitis with fever, headaches, and altered mental status. A prominent finding in WNE is muscular weakness (30 to 50 percent of patients with encephalitis), often with lower motor neuron symptoms, flaccid paralysis, and hyporeflexia with no sensory abnormalities.
  • West Nile meningitis (WNM) usually involves fever, headache, and stiff neck. Pleocytosis, an increase of white blood cells in cerebrospinal fluid, is also present. Changes in consciousness are not usually seen and are mild when present.
  • West Nile meningoencephalitis is inflammation of both the brain (encephalitis) and meninges (meningitis).
  • West Nile poliomyelitis (WNP), an acute flaccid paralysis syndrome associated with WNV infection, is less common than WNM or WNE. This syndrome is generally characterized by the acute onset of asymmetric limb weakness or paralysis in the absence of sensory loss. Pain sometimes precedes the paralysis. The paralysis can occur in the absence of fever, headache, or other common symptoms associated with WNV infection. Involvement of respiratory muscles, leading to acute respiratory failure, can sometimes occur.
  • West-Nile reversible paralysis,. Like WNP, the weakness or paralysis is asymmetric. Reported cases have been noted to have an initial preservation of deep tendon reflexes, which is not expected for a pure anterior horn involvement. Disconnect of upper motor neuron influences on the anterior horn cells possibly by myelitis or glutamate excitotoxicity have been suggested as mechanisms. The prognosis for recovery is excellent.
  • Nonneurologic complications of WNV infection that may rarely occur include fulminant hepatitis, pancreatitis, myocarditis, rhabdomyolysis, orchitis, nephritis, optic neuritis and cardiac dysrhythmias and hemorrhagic fever with coagulopathy. Chorioretinitis may also be more common than previously thought.
  • Cutaneous manifestations specifically rashes, are not uncommon in WNV-infected patients; however, there is a paucity of detailed descriptions in case reports and there are few clinical images widely available. Punctate erythematous, macular, and papular eruptions, most pronounced on the extremities have been observed in WNV cases and in some cases histopathologic findings have shown a sparse superficial perivascular lymphocytic infiltrate, a manifestation commonly seen in viral exanthems. A literature review provides support that this punctate rash is a common cutaneous presentation of WNV infection.

Causes - West Nile virus

Infected mosquitoes are the primary method of transmission of the West Nile virus and were the source of the 1999 New York outbreak. Ticks infected with the West Nile virus have been found in Asia and Africa. Their role in the transmission and maintenance of the virus is uncertain. However, ticks have not been associated in the transmission of the West Nile virus in the New York outbreak.

Prevention - West Nile virus

Personal protective measures can be taken to greatly reduce the risk of being bitten by an infected mosquito:

  • Using insect repellent on exposed skin to repel mosquitoes. EPA-registered repellents include products containing DEET (N,N-diethylmetatoluamide) and picaridin (KBR 3023). DEET concentrations of 30% to 50% are effective for several hours. Picaridin, available at 7% and 15% concentrations, needs more frequent application. DEET formulations as high as 50% are recommended for both adults and children over two months of age. Protect infants less than two months of age by using a carrier draped with mosquito netting with an elastic edge for a tight fit.
  • When using sunscreen, apply sunscreen first and then repellent. Repellent should be washed off at the end of the day before going to bed.
  • Wear long-sleeve shirts, which should be tucked in, long pants, socks, and hats to cover exposed skin. Insect repellents should be applied over top of protective clothing for greater protection. Do not apply insect repellents underneath clothing.
  • The application of permethrin-containing (e.g., Permanone) or other insect repellents to clothing, shoes, tents, mosquito nets, and other gear for greater protection. Permethrin is not labeled for use directly on skin. Most repellent is generally removed from clothing and gear by a single washing, but permethrin-treated clothing is effective for up to five washings.
  • Be aware that most mosquitoes that transmit disease are most active during twilight periods (dawn and dusk or in the evening). A notable exception is the Asian tiger mosquito, which is a daytime feeder and is more apt to be found in, or on the periphery of, shaded areas with heavy vegetation. They are now widespread in the United States, and in Florida they have been found in all 67 counties.
  • Staying in air-conditioned or well-screened housing, and/or sleeping under an insecticide-treated bed net. Bed nets should be tucked under mattresses and can be sprayed with a repellent if not already treated with an insecticide.


Monitoring and control

West Nile virus can be sampled from the environment by the pooling of trapped mosquitoes via ovitraps, carbon dioxide-baited light traps, and gravid traps, testing blood samples drawn from wild birds, dogs, and sentinel monkeys, as well as testing brains of dead birds found by various animal control agencies and the public.

Testing of the mosquito samples requires the use of reverse-transcriptase PCR (RT-PCR) to directly amplify and show the presence of virus in the submitted samples. When using the blood sera of wild birds and sentinel chickens, samples must be tested for the presence of WNV antibodies by use of immunohistochemistry (IHC) or enzyme-linked immunosorbent assay (ELISA).

Dead birds, after necropsy, or their oral swab samples collected on specific RNA-preserving filter paper card, can have their virus presence tested by either RT-PCR or IHC, where virus shows up as brown-stained tissue because of a substrate-enzyme reaction.

West Nile control is achieved through mosquito control, by elimination of mosquito breeding sites such as abandoned pools, applying larvacide to active breeding areas, and targeting the adult population via lethal ovitraps and aerial spraying of pesticides.

Environmentalists have condemned attempts to control the transmitting mosquitoes by spraying pesticide, saying the detrimental health effects of spraying outweigh the relatively few lives that may be saved, and more environmentally friendly ways of controlling mosquitoes are available. They also question the effectiveness of insecticide spraying, as they believe mosquitoes that are resting or flying above the level of spraying will not be killed; the most common vector in the northeastern United States, Culex pipiens, is a canopy feeder.



Diagnosis - West Nile virus

Preliminary diagnosis is often based on the patient's clinical symptoms, places and dates of travel (if patient is from a nonendemic country or area), activities, and epidemiologic history of the location where infection occurred. A recent history of mosquito bites and an acute febrile illness associated with neurologic signs and symptoms should cause clinical suspicion of WNV.

Diagnosis of West Nile virus infections is generally accomplished by serologic testing of blood serum or cerebrospinal fluid (CSF), which is obtained via a lumbar puncture. Typical findings of WNV infection include lymphocytic pleocytosis, elevated protein level, reference glucose and lactic acid levels, and no erythrocytes.

Definitive diagnosis of WNV is obtained through detection of virus-specific antibody IgM and neutralizing antibodies. Cases of West Nile virus meningitis and encephalitis that have been serologically confirmed produce similar degrees of CSF pleocytosis and are often associated with substantial CSF neutrophilia. Specimens collected within eight days following onset of illness may not test positive for West Nile IgM, and testing should be repeated. A positive test for West Nile IgG in the absence of a positive West Nile IgM is indicative of a previous flavavirus infection and is not by itself evidence of an acute West Nile virus infection.

If cases of suspected West Nile virus infection, sera should be collected on both the acute and convalescent phases of the illness. Convalescent specimens should be collected 2–3 weeks after acute specimens.

It is common in serologic testing for cross-reactions to occur among flaviviruses such as dengue virus (DENV) and tick-borne encephalitis virus; this necessitates caution when evaluating serologic results of flaviviral infections.

Four FDA-cleared WNV IgM ELISA kits are commercially available from different manufacturers in the U.S., each of these kits is indicated for use on serum to aid in the presumptive laboratory diagnosis of WNV infection in patients with clinical symptoms of meningitis or encephalitis. Positive WNV test kits obtained via use of these kits should be confirmed by additional testing at a state health department laboratory or CDC.

In fatal cases, nucleic acid amplification, histopathology with immunohistochemistry, and virus culture of autopsy tissues can also be useful. Only a few state laboratories or other specialized laboratories, including those at CDC, are capable of doing this specialized testing.

Prognosis - West Nile virus

While the general prognosis is favorable, current studies indicate that West Nile Fever can often be more severe than previously recognized, with studies of various recent outbreaks indicating that it may take as long as 60–90 days to recover. Patients with milder WNF are just as likely as those with more severe manifestations of neuroinvasive disease to experience multiple long term (>1+ years) somatic complaints such as tremor, and dysfunction in motor skills and executive functions. Patients with milder illness are just as likely as patients with more severe illness to experience adverse outcomes. Recovery is marked by a long convalescence with fatigue. One study found that neuroinvasive WNV infection was associated with an increased risk for subsequent kidney disease.

Treatment - West Nile virus

No specific treatment is available for WNV infection. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, respiratory support, and prevention of secondary infections.

Resources - West Nile virus

.

Orphan Therapies
Videos
Currently no videos.
To submit one, CLICK HERE
Research Publications